
18 The Delphi Magazine Issue 52

Under Construction:
Delphi 5 InternetExpress, 3
by Bob Swart

Delphi 5 InternetExpress com-
bines the WebBroker and

MIDAS technologies, producing
HTML and XML as the end result
for ultra-thin clients. This is the
third, and (for now) final, article in
this series, explaining how to make
best use of InternetExpress.

The Story So Far
Two months ago, we saw how to
build a master-detail relationship
on a MIDAS application server, and
provide it (using a WebConnection
component) to a client application.
The client consisted of an
XMLBroker and MidasPageProducer,
extending the existing WebBroker
Technology to produce a web
server application. XML was used
in two ways: both as a data format
for the packets that were sent from
the DataSetProvider to the
XMLBroker (and back), and as a data
format for the actual data embed-
ded inside the (D)HTML web pages
that we could see inside the web
browser.

Last month, we saw how to limit
the amount of data being sent from
the web server to the browser, and
how to handle update errors (also
called reconcile errors). And I
also showed you how you could

use the InternetExpress compo-
nent without actually needing a
MIDAS licence... but, ahem, check
the sidebar on page 21 for an
update on that issue.

This Time
This time (in the third and, for now,
last instalment of this topic), we’ll
see how we can extend Internet-
Express, by exploring some
custom add-on components that
plug right into the Web Editor.
We’ll also explore ways to enhance
the layout of the resulting web
pages and see techniques to debug
InternetExpress applications: not
an easy task once you realise the
tricks that your web server can
play with you.

But before we start, I’d like to
return to the place where we left off
last time: the topic of using
InternetExpress in a single-tier
application.

Non-Remote InternetExpress
Some of you may have noticed it
already, but last month I presented
a solution for a non-remote
InternetExpress, where we used
two tables, two DataSetProviders
and two XMLBrokers to feed a
MidasPageProducer inside a
WebBroker application. Unfortu-
nately, this does not give us a

working master-detail
relation: the master
and detail data is not
connected. You can
see what I mean if you
execute the CGI51 pro-
ject from last time in
your browser (if you
have no web server on
your machine, read on
for a quick-and-dirty
solution for that part).
Inside your browser
you will see that the
master table (cus-
tomer) is not linked to

the detail table (orders). You can
navigate through the master table,
but no matter which master record
is selected, the detail table will
show all the orders.

The reason for this is, of course,
the fact that we used two
standalone XMLBroker compo-
nents, which are in no way con-
nected to each other (they don’t
even know the other one exists),
so the resulting XML data packets
are in no way aware of each other’s
existence. In a multi-tier Internet-
Express application, we could
simply use one XMLBroker and get
our hands on the detail table
(orders) through the NestedTable
DataSet field. The funny thing, as
you’ll see in a moment, is that this
field was not available from the
XMLBroker component when build-
ing a non-remote InternetExpress
application. But let’s start from the
beginning.

Start a new WebBroker applica-
tion (File | New – Web Server
Application), select an
ISAPI/NSAPI Dynamic Link Library
(we’ll use this example to debug
later in this article) and save as
project name ISAPI52.DPR (with
WebMod.pas for the Web Module
itself). Drop two table components
on (BDE, ADO or whatever). I’ll use
ADO here, as I personally think
that ADO, as the next generation
ODBC, will be a more and more
commonly used database connec-
tivity technology. So, apart from
the two TADOTable components, we
need a TADOConnection component
as well. After you’ve connected the
ADOConnection (see last month),
make sure the two tables point to
the customer and orders tables,
and rename them to
ADOTableCustomer and ADOTable-
Orders. Next, we need a DataSource
component connected to the
ADOTableCustomer. This DataSource
is used to create the master-detail

➤ Figure 1: Field Link Designer.

December 1999 The Delphi Magazine 19

relation between the ADOTable-
Customer and ADOTableOrders
(because the Visual DataModule
Designer has a bug that prevents it
to work with ADO tables, remem-
ber?). Set the MasterSource prop-
erty of ADOTableOrders to the
DataSource, and click on the ellipsis
next to the MasterFields property
to get the Field Link Designer
dialog for an ADO master-detail
relationship.

Note that ADOTables provide a bit
less information to the Delphi IDE
than regular BDE tables, so we
don’t see index names, for exam-
ple. That should not be a problem,
however. Just select the CustNo
field on both sides and add the
master-detail relationship (see
Figure 1).

Now, go to the MIDAS tab, and
drop one DataSetProvider on the
Web Module. Set its DataSet prop-
erty to the ADOTableCustomer. Last
time, we used another DataSet-
Provider to connect to the
ADOTableOrders, but this time we
pass the records of ADOTableOrders
as a nested table (in a DataSet-
Field) instead.

As the next step, go to the
InternetExpress tab, and drop the
XMLBroker and MidasPageProducer
components. Set the ProviderName
of the XMLBroker to the DataSet-
PageProducer component. Note
that we don’t want or need to
specify the RemoteServer property
of the XMLBroker component;
instead, we need to wire the XML
packets from the DataSetProvider
directly to the XMLBroker.

Custom
InternetExpress Components
Before we continue, let’s make sure
the ‘InternetExpress sample com-
ponents’ design-time package has
been loaded and activated for our
current project. In case you didn’t
load it last time, it can be found at:

C:\Program Files\Borland\
Delphi5\demos\MIDAS\
InternetExpress\INetXCustom\
DCLINetXCustom.dpk

(where the runtime package
INetXCustom.dpk can also be
found). After compilation and

installation, the
dclinetxcustom.bpl file can
be found in the Delphi5\bin
directory next to the other
design-time packages.
Apart from the ReconcilePageProd-
ucer (which we saw and used last
time), it also contains numerous
components that are not immedi-
ately visible, but available in the
Web Page editor of the Midas-
PageProducer...

MidasPageProducer
So, right click on the
MidasPageProducer to start the Web
Page editor, in order to visually
build the master-detail relation-
ship. Like we’ve done before, we
can start with a DataForm. However,
the dclinetxcustom.dpk package
contains a number of additional
components that we can use here,
such as a TitleDataForm. The
TitleDataForm component has
three new properties (compared
to the DataForm), namely Caption,
CaptionAttributes (Custom, Style
and StyleRule) and Caption-
Position. We can use this to specify
a caption that can appear on top,
bottom, left or right side of the
other content of the TitleDataForm.
The Caption itself can contain
HTML codes, such as <H1>The
Delphi Magazine #52</H1>.

If we select the TitleDataForm, we
can add new components again,
such as a FieldGroup (for the
master record) and a DataGrid (for
the detail records). We also need a
DataNavigator. In this case, I’d like
to take two ImgDataNavigator
components (also introduced by
the dclinetxcustom package).
ImgDataNavigators have the same
functionality as regular Data-
Navigator components, but instead
of buttons with > and < caption text
on them, the buttons consist of
images. A set of sample images
(applyupdates.gif, delete.gif,
first.gif, insert.gif, last.gif, next.gif,
nextpage.gif, post.gif, prior.gif,
priorpage.gif and undo.gif) is pro-
vided in the same directory where
you can find the source code of the

dclinetxcustom.dpk package.
These should be made available on
your web server, and each
ImgDataNavigator must be able to
locate them by specifying the loca-
tion of the images in the
ImagePathURL property of the
ImgDataNavigator (like http://
192.168.91.201/images in my case).
Sometimes, the images don’t show
up spontaneously. In that case, I
need to right click on the
ImgDataNavigator, and explicitly
add the ImgButtons I want to see.
Close the Web Editor dialog,
re-open it, and then they’ll show
up. A bit funny, but it’s the first
time of Dr.Bob’s rule that says:
‘don’t take anything for granted:
create explicitly!’.

Now, connect one ImgData- Nav-
igator to the FieldGroup, and the
other to the DataGrid (to get rid of
the

ImgDataNavigatorX.XMLComponent
= nil

warnings. Click on the FieldGroup,
and specify XMLBroker1 as
XMLBroker component, and do the
same with the DataGrid. This gets
rid of the two remaining design
time warnings, and shows the
output at design-time almost as we
want it. The only thing that needs
to be done is make sure that the
DataGrid points to the detail
records (the nested table) instead
of the master records inside the
XMLBroker. For that, we need to
assign the name of the detail
dataset to the DataGrid1.XMLData-
SetField property.

Unfortunately, we cannot just
open up the XMLDataSetField prop-
erty of the DataGrid1 component.
Somehow, this immediately yields
the error message ‘Missing data
provider or data packet’.

The combobox for the
XMLDataSetFielddoesn’t even open

➤ Figure 2: Missing data
provider or data packet.

20 The Delphi Magazine Issue 52

up for us, so enough people will
just give up here. In fact, I almost
gave up myself, if it wasn’t for Dan
Miser (www.execpc.com/~dmiser)
who was also convinced that this is
a bug in the XMLDatasetField prop-
erty editor. However, since we did
set up our datasets with a nested
dataset, we should be able to
assign the property manually. In
this case, it means that we need to
type in the name of the dataset
field manually, we can’t select it
from the drop-down list.

To make things even worse: each
keypress will trigger the ‘Missing
data provider or data packet’ error.
That is, until we complete the
typing (of the name ADOTable-
Orders) and press Enter. Then all of
a sudden the connection will be
made, and the detail records (in
the nested dataset) are assigned to
the DataGrid.

Of course, no-one at Inprise ever
tried to use XMLBroker in a single
tier, so it’s not strange to see the
XMLDataSetField property editor
complaining about the lack of a
Remote Server (instead of just the
‘server-less’ data provider). Fortu-
nately, Dan presented me with the
workaround, which is really a joy
to demonstrate at sessions or con-
ferences, I must say (especially
when you hit the final Enter and
everything suddenly works fine).

Before we can run the current
standalone ISAPI52 web server

DLL, we must make sure that we’ve
thought of a few important things.

First, since we used ADO, make
sure the LoginPrompt property of
the ADOConnection component is
set to False (otherwise, the web
server will ‘show’ this dialog,
which will result in a hung ISAPI52
DLL). Then, as we used a Midas-
PageProducer producing XML, we
must make sure that we’ve set the
IncludePathURL to the location of
the JavaScript libraries.

Next, since we are creating a
WebBroker application we must
make sure to create at least one
WebItemAction and either assign its
PageProducer to a valid TPage-
Producer component, or write code
in the OnAction event handler to
producer output in the Response
parameter.

Finally, because we’re creating a
web server application, we should
set the output directory to the
(web server) scripts directory on
our machine, so we can recompile
and re-run the WebBroker applica-
tion. Note that this won’t work with
ISAPI DLLs, which remain loaded
by IIS, but we’ll get back to that in a
moment.

When we’ve finished the above
steps, it’s time to deploy and test
our ISAPI52.DLL with a web server
such as IIS. Strangely enough, the
output is empty! All we see is a title
caption and two rows of image but-
tons, but no data whatsoever. It
appears we didn’t listen closely
enough to Dr.Bob’s rule (as defined
earlier in this article): ‘don’t take

anything for granted:
create explicitly!’

In this case, we
should go back to the
FieldGroup and
DataGrid, and explic-
itly create the individ-
ual fields that we want
to display. Note that
usually with DataSets,
we get all fields by
default, and we have
to use the Fields
Editor to explicitly
add or delete fields.
We had a similar prob-
lem a while back with
the WebBroker Table-
Producer components,

that also only allow us to remove
fields after we’ve added them all.

Anyway, just go back to the
MidasPageProducer Web Editor,
right click on the FieldGroup and
DataGrid and in both cases explic-
itly add all the fields you want. This
time, when we re-compile and
re-run the application, we see the
output as expected (including the
connection between the master
record and the detail records), as
can be seen in Figure 3.

IntraBob v5.0
Note that the screenshot of Figure
3 wasn’t taken using a regular
browser, although internally it’s
the IE5 ActiveX control (ie the
WebBrowser component as found
in Delphi 5). Instead, the browser
that I’m using is IntraBob, which
was first developed in these very
pages of The Real Delphi Magazine
in order to test CGI and debug
ISAPI applications, and later
WebBroker apps (with full support
for the PathInfo field). At this time,
IntraBob version 5.0 also supports
InternetExpress including XML
packages and JavaScript libraries.
To illustrate the usefulness of this
tool, we can load the project of last
month that contained the ‘Next set
of %d records (currently showing
%d-%d)’ button. Frankly, without
IntraBob, it would have been a lot
harder to debug that project and
see where the project failed (and
when the table cursor was posi-
tioned to the first record again).
Using IntraBob, we can debug
ISAPI DLLs (which include
WebBroker and InternetExpress),
by specifying IntraBob as the host
application in the Run | Parameters
dialog (Figure 4).

Inside the ISAPI DLL, we are free
to set any breakpoint we want
(including new Delphi 5 features
such as breakpoint groups,
actions, etc). As soon as we hit the
Run button, IntraBob is started,
showing a HOME.HTM file that
should contain a CGI form and an
action item to launch the ISAPI
DLL. We can set specific options in
the Options tab, and just hit on
Submit to execute the ISAPI DLL. By
the way, I owe big thanks to Brian
Long for his help in deciphering

➤ Figure 3: Output of
1-Tier InternetExpress.

December 1999 The Delphi Magazine 21

the OLE Variant data pointer that
was generated by the browser
when the user clicks on the Submit
button. Thanks to Brian’s help, I
can now ‘kidnap’ this package, and
load the ISAPI DLL as a local pro-
cess, instead of a remote one
(loaded by the web server). This
also makes sure ISAPI DLLs do not
stay loaded when run by IntraBob
(so it’s a lot easier to re-compile
and re-run them: you don’t need to
shut down your World Wide Web
Service every two minutes).

Although I’ve made it myself, I
can only say that I can hardly imag-
ine InternetExpress or any
WebBroker development without
the use of IntraBob. It’s free at
www.drbob42.com/tools (the ver-
sion of IntraBob that can be found
on the Gold Issue CD-ROM is a
slightly older one which does not
support InternetExpress nor XML/
JavaScript).

Template Design
The final topic is, as so often, the
final touch. So far, we’ve seen how
to create HTML, XML and Java-
Script output that consists of
groups of fields, grids and naviga-
tors (with or without images as
buttons), but from a non-developer

perspective, the
output still looks
useless. We may be
amazed that the
browser does not
flicker when we click
the Next button (and
the next record is
fetched by the
JavaScript from the
XML data that’s
already part of the
current web page),
but most of our clients only see an
otherwise ugly web browser, with
ugly fonts and not even a scrollbar
in the grid. Well, I can’t blame
them, and I can’t give them a
scrollbar in the grid either, but I
can make the output a little more
user-friendly.

The key to this all is the HTMLDoc
property of the WebMidasProducer,
which contains a pre-defined set of
HTML lines:

<HTML>
<HEAD>
</HEAD>
<BODY>
<#INCLUDES><#STYLES><#WARNINGS>
<#FORMS><#SCRIPT>

</BODY>
</HTML>

We can add any HTML here, or
remove any HTML code from here.
The five special # tags are used by
InternetExpress (some at design-
time only, such as WARNINGS). We
need to leave at least one tag in our
HTML file to indicate where
InternetExpress should insert
forms, JavaScript, etc. The easiest
way is to insert a new tag, namely
<#BODYELEMENTS> in our HTML file.
This tag is shorthand for the five
<#INCLUDES> <#STYLES> <#WARNINGS>
<#FORMS> and <#SCRIPT> tags.

By the way, you can find a more
detailed explanation of the tags in
the help (search for BODYELEMENTS
and look at the help page titled
‘Customizing the MIDAS page
producer template’).

Some editions of Delphi 5 Enter-
prise (I believe the US edition only,
although I received a copy myself
as well) included HotMetal Pro 5,
which has built-in support for
these tags! But usually I use a plain
text editor to edit my HTML files.
For our example, I’ve modified it a
little bit to show a nice back-
ground, use friendly colours and a
much nicer set of fonts (Comic
Sans MS for the title and Verdana
for the regular text, which are
great fonts for websites). To make
things more flexible, we can decide
to give the HTMLFile property a
value (pointing to a filename that
contains the HTML source), which
will override the value of the
HTMLDoc property. Of course, you
have to make sure the HTMLFile
points to a valid file even when the
ISAPI DLL is uploaded to the web
server itself, but it means that you
can update the look-and-feel of the

➤ Figure 4: Run | Run Parameters
Host Application.

MIDAS Licensing Correction
In my Under Construction column in Issue 51 I wrote that I may have
found a way to use InternetExpress in a single-tier ‘web server app’
that may not require a MIDAS licence.

It appears I have been wrong. The rule is as follows: a deployment
licence does not need to be purchased only if the data packet does not
pass machine boundaries.

Now, the XML data packet between the DataSetProvider and the
XMLBroker stays on the same machine (the web server). However, the
resulting HTML page that’s being generated and shown on other
machines (the web browser clients) also contain XML data, which,
according to John Kaster of Inprise R&D, is also considered a MIDAS
XML data packet.

So, we don’t need a licence for MIDAS only if the XML packet really
stays on the same machine, like a standalone browser that shows the
data from the MidasPageProducer. But then why not use a Windows
GUI?

The upside: according to John Kaster’s reply at the InternetExpress
chat, it appears the price for an unlimited Server licence for MIDAS 3 is
now ‘only’ $2,500 (half the price of MIDAS 2’s $5,000 which is still dis-
played on the website). For that amount, you can put any number of
MIDAS Application Servers on one machine (and any number of
clients using those servers, including internet clients).

Hmm, so how about sharing a web server amongst developers...?

22 The Delphi Magazine Issue 52

web page by modifying the tem-
plate, while the application itself
doesn’t have to be recompiled
again. This means that our custom-
ers can make these changes them-
selves (using tools like the
aforementioned HotMetal Pro, for
example). And then we can blame
our customers when the user inter-
face looks bad...

Anyway, the HTMLFile variable
points to my template, which is
defined in Listing 1.

At design-time, this looks good.
It even shows the right font for the
field names and the grid titles,
although it doesn’t use the speci-
fied SIZE=2 but the default SIZE=3
instead. I don’t know why, but
Verdana looks good at size 2 and
less good at size 3. Furthermore, at
runtime we won’t see the right font
at all when using Netscape Naviga-
tor (the design-time browser is
based on the Internet Explorer con-
trol). To make sure that the right
font is used for the fieldgroup and
datagrid as well, we must make
sure to set either the correct style,
or insert HTML code to set the font
again.

For each field in the FieldGroup, I
specify ALIGN=RIGHT in the
CaptionAttributes Custom prop-
erty, so that the field labels are
right-aligned. I also append a colon
to each Caption itself, and prefix
the Caption with <FONT FACE=
"Verdana" SIZE=2>. When working
through the list of fields, you will
note that the correct font and font
size will be used at design-time as
well. And while working on the field
captions, let’s change Addr1 to the
more friendly Address instead. The
same trick can be applied with the
Captions of the DataGrid.

Furthermore, we can specify
more custom CaptionAttributes
for the DataGrid, such as the back-
ground colour of the column titles
with BGCOLOR=FFFF00 (to get a
yellow background to the column
heading). And while we’re at it,
note the ReadOnly property which
is part of every field, whether part
of a FieldGroup or DataGrid. This is
quite useful to indicate that a given
field cannot be changed (such as
the CustNo or OrderNo fields, or
when just browsing through the

data). Setting the
ReadOnly property to
True makes sure that
the end user cannot
accidentally change
the data at all.

Web designers can
even edit the tem-
plate in HTMLFile to
include menus (to
jump to other web
pages), more images,
and so on. But I think
you will agree that
even without those,
the screenshot in
Figure 5 looks better
already compared to
the one in Figure 3
(at least I think so).

Next Time
Next month in the one and only real
Delphi Magazine, we take a small
step back to examine the enhance-
ments that have been made in the
WebBroker framework.

As you may well know, I’m quite
fond of the WebBroker Technol-
ogy, and I love the new
InternetExpress stuff. But that was
not the only recent Delphi 5
enhancement or change made in
WebBroker, and some of them are
very much worthy of our attention,
so check back next month for more

internet development in Under
Construction (what else is new?)...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for TAS Advanced
Technologies and a freelance
technical author.

➤ Figure 5: Template based
MidasPageProducer output.

<HTML>
<HEAD>
<TITLE>Under Construction #52 : InternetExpress (3)</TITLE>
</HEAD>
<BODY BACKGROUND="http://192.168.91.201/images/back.gif">

<#BODYELEMENTS>
<P><HR><CENTER>
This page © 1999 by Bob Swart (aka Dr.Bob - www.drbob42.com)
</BODY>
</HTML>

➤ Listing 1

	The Story So Far
	This Time
	Non-Remote InternetExpress
	Custom InternetExpress Components
	MidasPageProducer
	IntraBob v5.0
	Template Design
	MIDAS Licensing Correction
	Next Time

